几何分析学术系列报告之一
 题目:Positive scalar curvature on foliations
 报告人:张伟平 院士
 报告时间: 2016年9月1日上午9:00-9:50
 报告地点: 创新园大厦A1101
 报告校内联系人:卢玉峰 教授
 报告摘要: We present generalizations of the Lichnerowicz vanishing theorem on the existence of positive scalar metrics to the case of foliations.
 报告人简介:南开大学陈省身数学研究所教授,中国科学院院士。
  
 几何分析学术系列报告之二
 题目:Finite group actions on spin 4-manifolds
 报告人:刘西民 教授
 报告时间: 2016年9月1日上午9:50-10:30
 报告地点: 创新园大厦A1101
 报告摘要:In this talk, some topics around some nonsmoothable group actions on 4-manifolds are given. Especially by considering the Kirby-Siebenmann invariant and the Rochlin invariant, we get a constraint on smooth  $Z_3$-actions on spin 4-manifold.
 报告人简介:永利集团3044欢迎光临教授、博士生导师。主要从事几何拓扑和微分几何的研究工作, 发表学术论文70 余篇。主持完成多项国家自然科学基金项目。
  
 几何分析学术系列报告之三
 题目:Vortex Filament on Symmetric Lie Algebras and Generalized Bi-Schr\"odinger Flows
 报告人:丁青  教授
 报告时间: 2016年9月1日上午10:50-11:40
 报告地点: 创新园大厦A1101
 报告校内联系人:卢玉峰 教授
  
 报告摘要:In this talk, we exhibit the third-order correction models of the
 vortex filament on symmetric Lie algebras in a purely geometric way
 by the Hamiltonian (or para-Hamiltonian) gradient flow of a fourth- 
 order functional.
 报告人简介:丁青,复旦大学数学学院教授,博士生导师,主要研究几何。
  
 几何分析学术系列报告之四
 题目:CY vs HYM
 报告人:傅吉祥 教授
 报告时间: 2016年9月1日下午14:30-15:20
 报告地点: 创新园大厦A1101
 报告校内联系人:卢玉峰 教授
  
  
 报告摘要I will first recall the Calabi-Yau theorem and the Donaldson-Uhlenbeck-Yau theorem. Then I will present some results on the limiting behavior of a class of HYM metrics.
 报告人简介:傅吉祥,复旦大学数学学院教授,博士生导师,现为教育部教授,主要研究复几何。
  
 几何分析学术系列报告之五
 题目:Transversal Yamabe problem
 报告人:王国芳 教授
 报告时间: 2016年9月1日下午15:20-16:10
 报告地点: 创新园大厦A1101
 报告校内联系人:卢玉峰 教授
  
 报告摘要:In this talk I will introduce a Yamabe type problem on a Riemannian foliation, a transversal Yamabe problem, and discuss the blow-up analysis on Riemannian foliations.
 报告人简介:就读于浙大,杭大和中科院数学所。1990博士毕业后先后在中科院系统所,数学所,莱比锡马普所和马德堡大学工作。2009年起任职德国Freiburg大学。
  
 几何分析学术系列报告之六
 题目:Recent results on energy identity of approximate harmonic map
 报告人:王文栋 副教授
 报告时间: 2016年9月1日下午16:20-17:00
 报告地点: 创新园大厦A1101
 报告摘要:In this talk, we'll recall some well-known results on energy identity for approximate harmonic map. Also, we'll talk about our recent result on this topic for general target manifold. This is a joint work with Dongyi WEI and Zhifei ZHANG.
 报告人简介:王文栋,永利集团3044欢迎光临副教授,目前研究工作主要集中在不可压流体方程及边界层研究,液晶方程领域。2010年在中科院数学所获得博士学位,随后在北京大学,香港中文大学做过博士后。迄今发表学术论文十余篇。